Copied to
clipboard

G = C22⋊D44order 352 = 25·11

The semidirect product of C22 and D44 acting via D44/D22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D224D4, C222D44, C23.15D22, (C2×C22)⋊1D4, (C2×C4)⋊1D22, D22⋊C44C2, C111C22≀C2, (C2×D44)⋊2C2, C2.7(D4×D11), C2.7(C2×D44), C22.5(C2×D4), (C2×C44)⋊1C22, C22⋊C42D11, (C23×D11)⋊1C2, (C2×C22).23C23, (C2×Dic11)⋊1C22, (C22×D11)⋊1C22, (C22×C22).12C22, C22.41(C22×D11), (C2×C11⋊D4)⋊1C2, (C11×C22⋊C4)⋊3C2, SmallGroup(352,77)

Series: Derived Chief Lower central Upper central

C1C2×C22 — C22⋊D44
C1C11C22C2×C22C22×D11C23×D11 — C22⋊D44
C11C2×C22 — C22⋊D44
C1C22C22⋊C4

Generators and relations for C22⋊D44
 G = < a,b,c,d | a2=b2=c44=d2=1, cac-1=dad=ab=ba, bc=cb, bd=db, dcd=c-1 >

Subgroups: 1042 in 130 conjugacy classes, 37 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C11, C22⋊C4, C22⋊C4, C2×D4, C24, D11, C22, C22, C22, C22≀C2, Dic11, C44, D22, D22, C2×C22, C2×C22, C2×C22, D44, C2×Dic11, C11⋊D4, C2×C44, C22×D11, C22×D11, C22×D11, C22×C22, D22⋊C4, C11×C22⋊C4, C2×D44, C2×C11⋊D4, C23×D11, C22⋊D44
Quotients: C1, C2, C22, D4, C23, C2×D4, D11, C22≀C2, D22, D44, C22×D11, C2×D44, D4×D11, C22⋊D44

Smallest permutation representation of C22⋊D44
On 88 points
Generators in S88
(2 54)(4 56)(6 58)(8 60)(10 62)(12 64)(14 66)(16 68)(18 70)(20 72)(22 74)(24 76)(26 78)(28 80)(30 82)(32 84)(34 86)(36 88)(38 46)(40 48)(42 50)(44 52)
(1 53)(2 54)(3 55)(4 56)(5 57)(6 58)(7 59)(8 60)(9 61)(10 62)(11 63)(12 64)(13 65)(14 66)(15 67)(16 68)(17 69)(18 70)(19 71)(20 72)(21 73)(22 74)(23 75)(24 76)(25 77)(26 78)(27 79)(28 80)(29 81)(30 82)(31 83)(32 84)(33 85)(34 86)(35 87)(36 88)(37 45)(38 46)(39 47)(40 48)(41 49)(42 50)(43 51)(44 52)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)
(1 52)(2 51)(3 50)(4 49)(5 48)(6 47)(7 46)(8 45)(9 88)(10 87)(11 86)(12 85)(13 84)(14 83)(15 82)(16 81)(17 80)(18 79)(19 78)(20 77)(21 76)(22 75)(23 74)(24 73)(25 72)(26 71)(27 70)(28 69)(29 68)(30 67)(31 66)(32 65)(33 64)(34 63)(35 62)(36 61)(37 60)(38 59)(39 58)(40 57)(41 56)(42 55)(43 54)(44 53)

G:=sub<Sym(88)| (2,54)(4,56)(6,58)(8,60)(10,62)(12,64)(14,66)(16,68)(18,70)(20,72)(22,74)(24,76)(26,78)(28,80)(30,82)(32,84)(34,86)(36,88)(38,46)(40,48)(42,50)(44,52), (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,81)(30,82)(31,83)(32,84)(33,85)(34,86)(35,87)(36,88)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(43,51)(44,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,88)(10,87)(11,86)(12,85)(13,84)(14,83)(15,82)(16,81)(17,80)(18,79)(19,78)(20,77)(21,76)(22,75)(23,74)(24,73)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,54)(44,53)>;

G:=Group( (2,54)(4,56)(6,58)(8,60)(10,62)(12,64)(14,66)(16,68)(18,70)(20,72)(22,74)(24,76)(26,78)(28,80)(30,82)(32,84)(34,86)(36,88)(38,46)(40,48)(42,50)(44,52), (1,53)(2,54)(3,55)(4,56)(5,57)(6,58)(7,59)(8,60)(9,61)(10,62)(11,63)(12,64)(13,65)(14,66)(15,67)(16,68)(17,69)(18,70)(19,71)(20,72)(21,73)(22,74)(23,75)(24,76)(25,77)(26,78)(27,79)(28,80)(29,81)(30,82)(31,83)(32,84)(33,85)(34,86)(35,87)(36,88)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(43,51)(44,52), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88), (1,52)(2,51)(3,50)(4,49)(5,48)(6,47)(7,46)(8,45)(9,88)(10,87)(11,86)(12,85)(13,84)(14,83)(15,82)(16,81)(17,80)(18,79)(19,78)(20,77)(21,76)(22,75)(23,74)(24,73)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,54)(44,53) );

G=PermutationGroup([[(2,54),(4,56),(6,58),(8,60),(10,62),(12,64),(14,66),(16,68),(18,70),(20,72),(22,74),(24,76),(26,78),(28,80),(30,82),(32,84),(34,86),(36,88),(38,46),(40,48),(42,50),(44,52)], [(1,53),(2,54),(3,55),(4,56),(5,57),(6,58),(7,59),(8,60),(9,61),(10,62),(11,63),(12,64),(13,65),(14,66),(15,67),(16,68),(17,69),(18,70),(19,71),(20,72),(21,73),(22,74),(23,75),(24,76),(25,77),(26,78),(27,79),(28,80),(29,81),(30,82),(31,83),(32,84),(33,85),(34,86),(35,87),(36,88),(37,45),(38,46),(39,47),(40,48),(41,49),(42,50),(43,51),(44,52)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)], [(1,52),(2,51),(3,50),(4,49),(5,48),(6,47),(7,46),(8,45),(9,88),(10,87),(11,86),(12,85),(13,84),(14,83),(15,82),(16,81),(17,80),(18,79),(19,78),(20,77),(21,76),(22,75),(23,74),(24,73),(25,72),(26,71),(27,70),(28,69),(29,68),(30,67),(31,66),(32,65),(33,64),(34,63),(35,62),(36,61),(37,60),(38,59),(39,58),(40,57),(41,56),(42,55),(43,54),(44,53)]])

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C11A···11E22A···22O22P···22Y44A···44T
order1222222222244411···1122···2222···2244···44
size111122222222224444442···22···24···44···4

64 irreducible representations

dim1111112222224
type+++++++++++++
imageC1C2C2C2C2C2D4D4D11D22D22D44D4×D11
kernelC22⋊D44D22⋊C4C11×C22⋊C4C2×D44C2×C11⋊D4C23×D11D22C2×C22C22⋊C4C2×C4C23C22C2
# reps1212114251052010

Matrix representation of C22⋊D44 in GL4(𝔽89) generated by

1000
0100
0010
008588
,
1000
0100
00880
00088
,
366800
527600
007984
00210
,
162900
717300
00105
008779
G:=sub<GL(4,GF(89))| [1,0,0,0,0,1,0,0,0,0,1,85,0,0,0,88],[1,0,0,0,0,1,0,0,0,0,88,0,0,0,0,88],[36,52,0,0,68,76,0,0,0,0,79,2,0,0,84,10],[16,71,0,0,29,73,0,0,0,0,10,87,0,0,5,79] >;

C22⋊D44 in GAP, Magma, Sage, TeX

C_2^2\rtimes D_{44}
% in TeX

G:=Group("C2^2:D44");
// GroupNames label

G:=SmallGroup(352,77);
// by ID

G=gap.SmallGroup(352,77);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,218,188,50,11525]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^44=d^2=1,c*a*c^-1=d*a*d=a*b=b*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽